Article ID Journal Published Year Pages File Type
523427 Journal of Visual Languages & Computing 2014 23 Pages PDF
Abstract

•The key contribution is a visual language to formally represent form geometry semantics on paper.•Parsing the language allows for the automatic generation of 3D virtual models.•A proof-of-concept prototype tool was implemented.•The language is capable to roughly model forms with linear topological ordering.•Evaluation results show that practising designers would use the language.

Every product that exists, ranging from a toothbrush to a car, has first been conceived as a mental concept. Due to its efficacy in rapidly externalizing concepts, paper-based sketching is still extensively used by practising designers to gradually develop the three-dimensional (3D) geometric form of a concept. It is a common practice that form concepts are sketched on paper prior to generating 3D virtual models in commercial Computer-Aided Design (CAD) systems. However, the user-interface of such systems does not support automatic generation of 3D models from sketches. Furthermore, the inherent characteristics of form sketching (e.g. idiosyncrasy) pose a challenge to computer-based understanding of the form concept semantics expressed on paper. To address these issues, this paper is therefore concerned with the development of a visual language that is prescribed and to be used by product designers to annotate paper-based sketches such that the form geometry semantics can be formally represented; parsing the annotated sketch allows for the automatic generation of 3D virtual models in CAD. Inspired by re-usable 3D CAD modelling functions and the related environmental constraints and requirements, a prescribed sketching language, PSL, has been developed to annotate paper-based form sketches. The framework architecture which parses the annotated sketch and subsequently extracts the form concept semantics is described. Based on this framework, a prototype computer tool has been implemented and evaluated. Evaluation results provide a degree of evidence, first on the suitability of PSL in representing the semantics of a range of forms, and secondly on the designers׳ acceptance of taking up this annotated sketching approach in practice.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,