Article ID Journal Published Year Pages File Type
524793 Transportation Research Part C: Emerging Technologies 2014 14 Pages PDF
Abstract

•The proposed algorithm generates a microanalysis of interactions between trajectories for large scenarios.•The algorithm provides a global fine-tuning for ATM that grants an extra degree of freedom.•The fine-tuning mitigates downstream effects in over-densified scenarios without affecting pre-programmed slots.

Current technological advances in communications and navigation have improved air traffic management (ATM) with new decision support tools to balance airspace capacity with user demands. Despite agreements achieved in flying reference business trajectories (RBTs) among different stakeholders, tight spatio-temporal connectivity between trajectories in dense sectors can cause perturbations that might introduce time or space deviations into the original RBTs, thus potentially affecting other 4D trajectories. In this paper, several challenging results are presented by properly tuning the Calculated Take-Off Times (CTOTs) as a tool for mitigating the propagation of perturbations between trajectories that can readily appear in dense sectors. Based on the identification of “collective microregions”, a tool for predicting potential spatio-temporal concurrence events between trajectories over the European airspace was developed, together with a CTOT algorithm to sequence the departures that preserve the scheduled slots while relaxing tight trajectory interactions. The algorithm was tested by considering a realistic scenario (designed and analyzed in the STREAM project (Stream, 2013)) to evaluate relevant ATM KPIs that provide aggregated information about the sensitivity of the system to trajectory interactions, taking into account the system dynamics at a network level. The proposed approach contributes to enhancing the ATM capacity of airports to mitigate network perturbations.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,