Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
525055 | Transportation Research Part C: Emerging Technologies | 2013 | 13 Pages |
Driver sleepiness contributes to a considerable proportion of road accidents, and a fit-for-duty test able to measure a driver’s sleepiness level might improve traffic safety. The aim of this study was to develop a fit-for-duty test based on eye movement measurements and on the sleep/wake predictor model (SWP, which predicts the sleepiness level) and evaluate the ability to predict severe sleepiness during real road driving. Twenty-four drivers participated in an experimental study which took place partly in the laboratory, where the fit-for-duty data were acquired, and partly on the road, where the drivers sleepiness was assessed. A series of four measurements were conducted over a 24-h period during different stages of sleepiness. Two separate analyses were performed; a variance analysis and a feature selection followed by classification analysis. In the first analysis it was found that the SWP and several eye movement features involving anti-saccades, pro-saccades, smooth pursuit, pupillometry and fixation stability varied significantly with different stages of sleep deprivation. In the second analysis, a feature set was determined based on floating forward selection. The correlation coefficient between a linear combination of the acquired features and subjective sleepiness (Karolinska sleepiness scale, KSS) was found to be R = 0.73 and the correct classification rate of drivers who reached high levels of sleepiness (KSS ⩾ 8) in the subsequent driving session was 82.4% (sensitivity = 80.0%, specificity = 84.2% and AUC = 0.86). Future improvements of a fit-for-duty test should focus on how to account for individual differences and situational/contextual factors in the test, and whether it is possible to maintain high sensitive/specificity with a shorter test that can be used in a real-life environment, e.g. on professional drivers.
► Fit-for-duty test based on the sleep/wake predictor model and eye movements. ► Different levels of sleepiness were induced during a 24-h period. ► Field test on public roads with sleepy drivers. ► The developed test correlates with subjective sleepiness ratings. ► Prediction of drivers who will reach dangerous levels of sleepiness.