Article ID Journal Published Year Pages File Type
525970 Computer Vision and Image Understanding 2012 14 Pages PDF
Abstract

In content-based image retrieval (CBIR) using feedback-based learning, the user marks the relevance of returned images and the system learns how to return more relevant images in a next iteration. In this learning process, image comparison may be based on distinct distance spaces due to multiple visual content representations. This work improves the retrieval process by incorporating multiple distance spaces in a recent method based on optimum-path forest (OPF) classification. For a given training set with relevant and irrelevant images, an optimization algorithm finds the best distance function to compare images as a combination of their distances according to different representations. Two optimization techniques are evaluated: a multi-scale parameter search (MSPS), never used before for CBIR, and a genetic programming (GP) algorithm. The combined distance function is used to project an OPF classifier and to rank images classified as relevant for the next iteration. The ranking process takes into account relevant and irrelevant representatives, previously found by the OPF classifier. Experiments show the advantages in effectiveness of the proposed approach with both optimization techniques over the same approach with single distance space and over another state-of-the-art method based on multiple distance spaces.

► Two feedback-based learning methods based on OPF and multiple distance space. ► They solve image retrieval in a few iterations of relevance feedback. ► Considerable gains in effectiveness are demonstrated.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,