Article ID Journal Published Year Pages File Type
526193 Computer Vision and Image Understanding 2010 16 Pages PDF
Abstract

Estimating motions of a multi-camera system which may not have overlapping fields of view is generally complex and computationally expensive because of the non-zero offset between each camera’s center. It is conceivable that if we can assume that multiple cameras share a single optical center, and thus can be modeled as a spherical imaging system, motion estimation and calibration of this system would become simpler and more efficient.In this paper, we analytically and empirically derive the conditions under which a multi-camera system can be modeled as a single spherical camera. Various analyses and experiments using simulated and real images show that spherical approximation is applicable to a surprisingly larger extent than currently expected. Moreover, we show that, when applicable, this approximation even results in improvements in accuracy and stability of estimated motion over the exact algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,