Article ID Journal Published Year Pages File Type
526196 Computer Vision and Image Understanding 2010 11 Pages PDF
Abstract

We address the problem of variational optical flow for video processing applications that need fast operation and robustness to drastic variations in illumination. Recently, a solution [1] has been proposed based on the photometric invariants of the dichromatic reflection model [2]. However, this solution is only applicable to colour videos with brightness variations. Greyscale videos, or colour videos with colour illumination changes cannot be adequately handled. We propose two illumination-robust variational methods based on cross-correlation that are applicable to colour and grey-level sequences and robust to brightness and colour illumination changes. First, we present a general implicit nonlinear scheme that assumes no particular analytical form of energy functional and can accommodate different image components and data metrics, including cross-correlation. We test the nonlinear scheme on standard synthetic data with artificial brightness and colour effects added and conclude that cross-correlation is robust to both kinds of illumination changes. Then we derive a fast linearised numerical scheme for cross-correlation based variational optical flow. We test the linearised algorithm on challenging data and compare it to a number of state-of-the-art variational flow methods.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,