Article ID Journal Published Year Pages File Type
527012 Image and Vision Computing 2012 10 Pages PDF
Abstract

Many modern computer vision algorithms are built atop of a set of low-level feature operators (such as SIFT [23,24]; HOG [8,3]; or LBP [1,2]) that transform raw pixel values into a representation better suited to subsequent processing and classification. While the choice of feature representation is often not central to the logic of a given algorithm, the quality of the feature representation can have critically important implications for performance. Here, we demonstrate a large-scale feature search approach to generating new, more powerful feature representations in which a multitude of complex, nonlinear, multilayer neuromorphic feature representations are randomly generated and screened to find those best suited for the task at hand. In particular, we show that a brute-force search can generate representations that, in combination with standard machine learning blending techniques, achieve state-of-the-art performance on the Labeled Faces in the Wild (LFW) [19] unconstrained face recognition challenge set. These representations outperform previous state-of-the-art approaches, in spite of requiring less training data and using a conceptually simpler machine learning backend. We argue that such large-scale-search-derived feature sets can play a synergistic role with other computer vision approaches by providing a richer base of features with which to work.

► We describe a class of biologically-inspired face recognition models. ► We use high-throughput search procedure to explore a large range of candidate models. ► Models found this way achieve state-of-the-art performance on the LFW test set.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,