Article ID Journal Published Year Pages File Type
527212 Image and Vision Computing 2010 14 Pages PDF
Abstract

In this paper, we present a 3D automatic registration method based on Gaussian Fields and energy minimization. A continuously differentiable energy function is defined, which is convex in a large neighborhood of the alignment parameters. We show that the size of the region of convergence can be significantly extended reducing the need for close initialization and overcoming local convergence problems of the standard Iterative Closest Point (ICP) algorithms. Moreover, the Gaussian criterion can be applied with linear computational complexity using Fast Gauss Transform methods. Experimental evaluation of the technique using synthetic and real datasets demonstrates the usefulness as well as the limits of the approach.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,