Article ID Journal Published Year Pages File Type
527381 Image and Vision Computing 2010 12 Pages PDF
Abstract

This article proposes a method to segment Internet images, that is, a group of images corresponding to a specific object (the query) containing a significant amount of irrelevant images. The segmentation algorithm we propose is a combination of two distinct methods based on color. The first one considers all images to classify pixels into two sets: object pixels and background pixels. The second method segments images individually by trying to find a central object. The final segmentation is obtained by intersecting the results from both. The segmentation results are then used to re-rank images and display a clean set of images illustrating the query. The algorithm is tested on various queries for animals, natural and man-made objects, and results are discussed, showing that the obtained segmentation results are suitable for object learning.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,