Article ID Journal Published Year Pages File Type
527929 Computer Vision and Image Understanding 2009 9 Pages PDF
Abstract

In this paper we propose a new method for extending 1-D step edge detection filters to two dimensions via complex-valued filtering. Complex-valued filtering allows us to obtain edge magnitude and direction simultaneously. Our method can be viewed either as an extension of n-directional complex filtering of Paplinski to infinite directions or as a variant of Canny’s gradient-based approach. In the second view, the real part of our filter computes the gradient in the x direction and the imaginary part computes the gradient in the y direction. Paplinski claimed that n-directional filtering is an improvement over the gradient-based method, which computes gradient only in two directions. We show that our omnidirectional and Canny’s gradient-based extensions of the 1-D DoG coincide. In contrast to Paplinski’s claim, this coincidence shows that both approaches suffer from being confined to the subspace of two 2-D filters, even though n-directional filtering hides these filters in a single complex-valued filter. Aside from these theoretical results, the omnidirectional method has practical advantages over both n-directional and gradient-based approaches. Our experiments on synthetic and real-world images show the superiority of omnidirectional and gradient-based methods over n-directional approach. In comparison with the gradient-based method, the advantage of omnidirectional method lies mostly in freeing the user from specifying the smoothing window and its parameter. Since the omnidirectional and Canny’s gradient-based extensions of the 1-D DoG coincide, we have based our experiments on extending the 1-D Demigny filter. This filter has been proposed by Demigny as the optimal edge detection filter in sampled images.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,