Article ID Journal Published Year Pages File Type
528007 Computer Vision and Image Understanding 2007 13 Pages PDF
Abstract

This paper presents a novel approach to recognizing driver activities using a multi-perspective (i.e., four camera views) multi-modal (i.e., thermal infrared and color) video-based system for robust and real-time tracking of important body parts. The multi-perspective characteristics of the system provides redundant trajectories of the body parts, while the multi-modal characteristics of the system provides robustness and reliability of feature detection and tracking. The combination of a deterministic activity grammar (called ‘operation-triplet’) and a Hidden Markov model-based classifier provides semantic-level analysis of human activity. The application context for this research is that of intelligent vehicles and driver assistance systems. Experimental results in real-world street driving demonstrate effectiveness of the proposed system.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,