Article ID Journal Published Year Pages File Type
528260 Information Fusion 2013 10 Pages PDF
Abstract

In this paper, we propose a multiple-metric learning algorithm to learn jointly a set of optimal homogenous/heterogeneous metrics in order to fuse the data collected from multiple sensors for joint classification. The learned metrics have the potential to perform better than the conventional Euclidean metric for classification. Moreover, in the case of heterogenous sensors, the learned multiple metrics can be quite different, which are adapted to each type of sensor. By learning the multiple metrics jointly within a single unified optimization framework, we can learn better metrics to fuse the multi-sensor data for a joint classification. Furthermore, we also exploit multi-metric learning in a kernel induced feature space to capture the non-linearity in the original feature space via kernel mapping.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,