Article ID Journal Published Year Pages File Type
528467 Information Fusion 2007 12 Pages PDF
Abstract

The task of enhancing the perception of a scene by combining information captured by different sensors is usually known as image fusion. The pyramid decomposition and the Dual-Tree Wavelet Transform have been thoroughly applied in image fusion as analysis and synthesis tools. Using a number of pixel-based and region-based fusion rules, one can combine the important features of the input images in the transform domain to compose an enhanced image. In this paper, the authors test the efficiency of a transform constructed using Independent Component Analysis (ICA) and Topographic Independent Component Analysis bases in image fusion. The bases are obtained by offline training with images of similar context to the observed scene. The images are fused in the transform domain using novel pixel-based or region-based rules. The proposed schemes feature improved performance compared to traditional wavelet approaches with slightly increased computational complexity.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,