Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
528918 | Journal of Visual Communication and Image Representation | 2013 | 16 Pages |
Key frame based video summarization has emerged as an important area of research for the multimedia community. Video key frames enable an user to access any video in a friendly and meaningful way. In this paper, we propose an automated method of video key frame extraction using dynamic Delaunay graph clustering via an iterative edge pruning strategy. A structural constraint in form of a lower limit on the deviation ratio of the graph vertices further improves the video summary. We also employ an information-theoretic pre-sampling where significant valleys in the mutual information profile of the successive frames in a video are used to capture more informative frames. Various video key frame visualization techniques for efficient video browsing and navigation purposes are incorporated. A comprehensive evaluation on 100 videos from the Open Video and YouTube databases using both objective and subjective measures demonstrate the superiority of our key frame extraction method.