Article ID Journal Published Year Pages File Type
529183 Journal of Visual Communication and Image Representation 2007 14 Pages PDF
Abstract

This paper studies the connections between discrete two-dimensional schemes for shift-invariant Haar wavelet shrinkage on one hand, and nonlinear diffusion on the other. We show that using a single iteration on a single scale, the two methods can be made equivalent by the choice of the nonlinearity which controls each method: the shrinkage function, or the diffusivity function, respectively. In the two-dimensional setting, this diffusion–wavelet connection shows an important novelty compared to the one-dimensional framework or compared to classical 2-D wavelet shrinkage: The structure of two-dimensional diffusion filters suggests to use a coupled, synchronised shrinkage of the individual wavelet coefficient channels. This coupling enables to design Haar wavelet filters with good rotation invariance at a low computational cost. Furthermore, by transferring the channel coupling of vector- and matrix-valued nonlinear diffusion filters to the Haar wavelet setting, we obtain well-synchronised shrinkage methods for colour and tensor images. Our experiments show that these filters perform significantly better than conventional shrinkage methods that process all wavelets independently.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,