Article ID Journal Published Year Pages File Type
529333 Journal of Visual Communication and Image Representation 2010 11 Pages PDF
Abstract

Point set registration is important for calibration of multiple cameras, 3D reconstruction and recognition, etc. The iterative closest point (ICP) algorithm is accurate and fast for point set registration in a same scale, but it does not handle the case with different scales. This paper instead introduces a novel approach named the scaling iterative closest point (SICP) algorithm which integrates a scale matrix with boundaries into the original ICP algorithm for scaling registration. At each iterative step of this algorithm, we set up correspondence between two m–D point sets, and then use a simple and fast iterative algorithm with the singular value decomposition (SVD) method and the properties of parabola incorporated to compute scale, rotation and translation transformations. The SICP algorithm has been proved to converge monotonically to a local minimum from any given parameters. Hence, to reach desired global minimum, good initial parameters are required which are successfully estimated in this paper by analyzing covariance matrices of point sets. The SICP algorithm is independent of shape representation and feature extraction, and thereby it is general for scaling registration of m–D point sets. Experimental results demonstrate its efficiency and accuracy compared with the standard ICP algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,