Article ID Journal Published Year Pages File Type
529361 Image and Vision Computing 2009 12 Pages PDF
Abstract

The visual vocabulary is an intermediate level representation which has been proved to be very powerful for addressing object categorization problems. It is generally built by vector quantizing a set of local image descriptors, independently of the object model used for categorizing images. We propose here to embed the visual vocabulary creation within the object model construction, allowing to make it more suited for object class discrimination and therefore for object categorization. We also show that the model can be adapted to perform object level segmentation task, without needing any shape model, making the approach very adapted to high intra-class varying objects.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,