Article ID Journal Published Year Pages File Type
530008 Pattern Recognition 2015 13 Pages PDF
Abstract

•We propose a reference point (RP) generation algorithm based on breast anatomy.•We propose a new segmentation framework modeling tumor properties in two domains.•The proposed frequency constraint is invariant to the brightness and contrast.•The proposed cost function is graph-representable and can be globally optimized.

Due to the complicated structure of breast and poor quality of ultrasound images, accurately and automatically locating regions of interest (ROIs) and segmenting tumors are challenging problems for breast ultrasound (BUS) computer-aided diagnosis systems. In this paper, we propose a fully automatic BUS image segmentation approach for performing accurate and robust ROI generation, and tumor segmentation. In the ROI generation step, the proposed adaptive reference point (RP) generation algorithm can produce the RPs automatically based on the breast anatomy; and the multipath search algorithm generates the seeds accurately and fast. In the tumor segmentation step, we propose a segmentation framework in which the cost function is defined in terms of tumor׳s boundary and region information in both frequency and space domains. First, the frequency constraint is built based on the newly proposed edge detector which is invariant to contrast and brightness; and then the tumor pose, position and intensity distribution are modeled to constrain the segmentation in the spatial domain. The well-designed cost function is graph-representable and its global optimum can be found. The proposed fully automatic segmentation method is applied to a BUS database with 184 cases (93 benign and 91 malignant), and the performance is evaluated by the area and boundary error metrics. Compared with the newly published fully automatic method, the proposed method is more accurate and robust in segmenting BUS images.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,