Article ID Journal Published Year Pages File Type
531000 Pattern Recognition 2010 9 Pages PDF
Abstract

We present a novel formulation for pattern recognition in biomedical data. We adopt a binary recognition scenario where a control dataset contains samples of one class only, while a mixed dataset contains an unlabeled collection of samples from both classes. The mixed dataset samples that belong to the second class are identified by estimating posterior probabilities of samples for being in the control or the mixed datasets. Experiments on synthetic data established a better detection performance against possible alternatives. The fitness of the method in biomedical data analysis was further demonstrated on real multi-color flow cytometry and multi-channel electroencephalography data.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
,