Article ID Journal Published Year Pages File Type
531001 Pattern Recognition 2010 10 Pages PDF
Abstract

We tackle the structured output classification problem using the Conditional Random Fields (CRFs). Unlike the standard 0/1 loss case, we consider a cost-sensitive learning setting where we are given a non-0/1 misclassification cost matrix at the individual output level. Although the task of cost-sensitive classification has many interesting practical applications that retain domain-specific scales in the output space (e.g., hierarchical or ordinal scale), most CRF learning algorithms are unable to effectively deal with the cost-sensitive scenarios as they merely assume a nominal scale (hence 0/1 loss) in the output space. In this paper, we incorporate the cost-sensitive loss into the large margin learning framework. By large margin learning, the proposed algorithm inherits most benefits from the SVM-like margin-based classifiers, such as the provable generalization error bounds. Moreover, the soft-max approximation employed in our approach yields a convex optimization similar to the standard CRF learning with only slight modification in the potential functions. We also provide the theoretical cost-sensitive generalization error bound. We demonstrate the improved prediction performance of the proposed method over the existing approaches in a diverse set of sequence/image structured prediction problems that often arise in pattern recognition and computer vision domains.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
,