Article ID Journal Published Year Pages File Type
531255 Pattern Recognition 2006 11 Pages PDF
Abstract

We present a new algorithm for the registration of three-dimensional partially overlapping surfaces. It is based on an efficient scheme for the rejection of false point correspondences (correspondence outliers) and does not require initial pose estimation or feature extraction. An initial list of corresponding points is first derived using the regional properties of vertices on both surfaces. From these point correspondences, pairs of corresponding rigid triplets are formed. The normal vectors at the vertices of each corresponding triplet are used to compute the candidate rotations. By clustering the candidate rotation axes and candidate rotation angles separately, a large number of false correspondences are eliminated and an approximate rotation is decided, from which an approximate translation is also obtained. Finally, the optimal transformation parameters are determined by further refining the estimated parameters in an iterative manner. Mathematical analysis and experimental results show that the registration process is fast and accurate even when the objects are regularly shaped and contain many regionally similar surface patches.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,