Article ID Journal Published Year Pages File Type
531289 Pattern Recognition 2011 10 Pages PDF
Abstract

This paper extends the previous work in smooth support vector machine (SSVM) from binary to k  -class classification based on a single-machine approach and call it multi-class smooth SVM (MSSVM). This study implements MSSVM for a ternary classification problem and labels it as TSSVM. For the case k>3k>3, this study proposes a one-vs.-one-vs.-rest (OOR) scheme that decomposes the problem into k(k−1)/2 ternary classification subproblems based on the assumption of ternary voting games. Thus, the k-class classification problem can be solved via a series of TSSVMs. The numerical experiments in this study compare the classification accuracy for TSSVM/OOR, one-vs.-one, one-vs.-rest schemes on nine UCI datasets. Results show that TSSVM/OOR outperforms the one-vs.-one and one-vs.-rest for all datasets. This study includes further error analyses to emphasize that the prediction confidence of OOR is significantly higher than the one-vs.-one scheme. Due to the nature of OOR design, it can detect the hidden (unknown) class directly. This study includes a “leave-one-class-out” experiment on the pendigits dataset to demonstrate the detection ability of the proposed OOR method for hidden classes. Results show that OOR performs significantly better than one-vs.-one and one-vs.-rest in the hidden-class detection rate.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,