Article ID Journal Published Year Pages File Type
531317 Pattern Recognition 2009 10 Pages PDF
Abstract

Many handwritten gestures, characters, and symbols comprise multiple pendown strokes separated by penup strokes. In this paper, a large number of features known from the literature are explored for the recognition of such multi-stroke gestures. Features are computed from a global gesture shape. From its constituent strokes, the mean and standard deviation of each feature are computed. We show that using these new stroke-based features, significant improvements in classification accuracy can be obtained between 10% and 50% compared to global feature representations. These results are consistent over four different databases, containing iconic pen gestures, handwritten symbols, and upper-case characters. Compared to two other multi-stroke recognition techniques, improvements between 25% and 39% are achieved, averaged over all four databases.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,