Article ID Journal Published Year Pages File Type
531460 Pattern Recognition 2009 6 Pages PDF
Abstract

In this paper, we propose a novel bagging null space locality preserving discriminant analysis (bagNLPDA) method for facial feature extraction and recognition. The bagNLPDA method first projects all the training samples into the range space of a so-called locality preserving total scatter matrix without losing any discriminative information. The projected training samples are then randomly sampled using bagging to generate a set of bootstrap replicates. Null space discriminant analysis is performed in each replicate and the results of them are combined using majority voting. As a result, the proposed method aggregates a set of complementary null space locality preserving discriminant classifiers. Experiments on FERET and PIE subsets demonstrate the effectiveness of bagNLPDA.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,