Article ID Journal Published Year Pages File Type
531597 Pattern Recognition 2007 13 Pages PDF
Abstract

A two-step procedure is developed for the exploratory mining of real-valued vector (multivariate) time series using partition-based clustering methods. The proposed procedure was tested with model-generated data, multiple sensor-based process data, as well as simulation data. The test results indicate that the proposed procedure is quite effective in producing better clustering results than a hidden Markov model (HMM)-based clustering method if there is a priori knowledge about the number of clusters in the data. Two existing validity indices were tested and found ineffective in determining the actual number of clusters. Determining the appropriate number of clusters in the case that there is no a priori knowledge is a known unresolved research issue not only for our proposed procedure but also for the HMM-based clustering method and further development is necessary.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
,