Article ID Journal Published Year Pages File Type
531639 Pattern Recognition 2007 12 Pages PDF
Abstract

A data stream is a potentially uninterrupted flow of data. Mining this flow makes it necessary to cope with uncertainty, as only a part of the stream can be stored. In this paper, we evaluate a statistical technique which biases the estimation of the support of patterns, so as to maximize either the precision or the recall, as chosen by the user, and limit the degradation of the other criterion. Theoretical results show that the technique is not far from the optimum, from the statistical standpoint. Experiments performed tend to demonstrate its potential, as it remains robust even under significant distribution drifts.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,