Article ID Journal Published Year Pages File Type
531658 Pattern Recognition 2007 10 Pages PDF
Abstract

Progresses made on content-based image retrieval have reactivated the research on image analysis and a number of similarity-based methods have been established to assess the similarity between images. In this paper, the content-based approach is extended towards the problem of image collection summarization and comparison. For these purposes we propose to carry out clustering analysis on visual features using self-organizing maps, and then evaluate their similarity using a few dissimilarity measures implemented on the feature maps. The effectiveness of these dissimilarity measures is then examined with an empirical study.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
,