Article ID Journal Published Year Pages File Type
531739 Pattern Recognition 2007 14 Pages PDF
Abstract

This paper presents a hierarchical multi-state pose-dependent approach for facial feature detection and tracking under varying facial expression and face pose. For effective and efficient representation of feature points, a hybrid representation that integrates Gabor wavelets and gray-level profiles is proposed. To model the spatial relations among feature points, a hierarchical statistical face shape model is proposed to characterize both the global shape of human face and the local structural details of each facial component. Furthermore, multi-state local shape models are introduced to deal with shape variations of some facial components under different facial expressions. During detection and tracking, both facial component states and feature point positions, constrained by the hierarchical face shape model, are dynamically estimated using a switching hypothesized measurements (SHM) model. Experimental results demonstrate that the proposed method accurately and robustly tracks facial features in real time under different facial expressions and face poses.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,