Article ID Journal Published Year Pages File Type
531881 Pattern Recognition 2007 12 Pages PDF
Abstract

Kernel principal component analysis (kernel PCA) is a non-linear extension of PCA. This study introduces and investigates the use of kernel PCA for novelty detection. Training data are mapped into an infinite-dimensional feature space. In this space, kernel PCA extracts the principal components of the data distribution. The squared distance to the corresponding principal subspace is the measure for novelty. This new method demonstrated a competitive performance on two-dimensional synthetic distributions and on two real-world data sets: handwritten digits and breast-cancer cytology.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
,