Article ID Journal Published Year Pages File Type
531946 Pattern Recognition 2006 4 Pages PDF
Abstract

A novel fuzzy nonlinear classifier, called kernel fuzzy discriminant analysis (KFDA), is proposed to deal with linear non-separable problem. With kernel methods KFDA can perform efficient classification in kernel feature space. Through some nonlinear mapping the input data can be mapped implicitly into a high-dimensional kernel feature space where nonlinear pattern now appears linear. Different from fuzzy discriminant analysis (FDA) which is based on Euclidean distance, KFDA uses kernel-induced distance. Theoretical analysis and experimental results show that the proposed classifier compares favorably with FDA.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,