Article ID Journal Published Year Pages File Type
532171 Pattern Recognition 2013 8 Pages PDF
Abstract

•We revisit the orthogonal moments defined on the unit disk.•We re-develop equations from original definitions.•Some errata and comments to an existing paper are presented.

Ping et al. [Z. Ping, H. Ren, J. Zou, Y. Sheng, and W. Bo, Generic orthogonal moments: Jacobi–Fourier moments for invariant image description, Pattern Recognition 40 (4) (2007) 1245–1254] made a landmark contribution to the theory of two-dimensional orthogonal moments confined to the unit disk by unifying the radial kernels of existing polynomial-based circular orthogonal moments under the roof of shifted Jacobi polynomials. However, the work contains some errata that result mainly from the confusion between the two slightly different definitions of shifted Jacobi polynomials in the literature. Taking into account the great importance and the high impact of the work in the pattern recognition community, this paper points out the confusing points, corrects the errors, and gives some other relevant comments. The corrections developed in this paper are illustrated by some experimental evidence.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,