Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
532433 | Pattern Recognition | 2011 | 13 Pages |
In this paper, we address the problem of designing efficient fusion schemes of complementary biometric modalities such as face and palmprint, which are effectively coded using Log-Gabor transformations, resulting in high dimensional feature spaces. We propose different fusion schemes at match score level and feature level, which we compare on a database of 250 virtual people built from the face FRGC and the palmprint PolyU databases. Moreover, in order to reduce the complexity of the fusion scheme, we implement a particle swarm optimization (PSO) procedure which allows the number of features (identifying a dominant subspace of the large dimension feature space) to be significantly reduced while keeping the same level of performance. Results in both closed identification and verification rates show a significant improvement of 6% in performance when performing feature fusion in Log-Gabor space over the more common optimized match score level fusion method.