Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
532553 | Pattern Recognition | 2010 | 14 Pages |
In this paper, a supervised feature selection approach is presented, which is based on metric applied on continuous and discrete data representations. This method builds a dissimilarity space using information theoretic measures, in particular conditional mutual information between features with respect to a relevant variable that represents the class labels. Applying a hierarchical clustering, the algorithm searches for a compression of the information contained in the original set of features. The proposed technique is compared with other state of art methods also based on information measures. Eventually, several experiments are presented to show the effectiveness of the features selected from the point of view of classification accuracy.