Article ID Journal Published Year Pages File Type
532726 Pattern Recognition 2009 10 Pages PDF
Abstract

Classification of high-dimensional statistical data is usually not amenable to standard pattern recognition techniques because of an underlying small sample size problem. To address the problem of high-dimensional data classification in the face of a limited number of samples, a novel principal component analysis (PCA) based feature extraction/classification scheme is proposed. The proposed method yields a piecewise linear feature subspace and is particularly well-suited to difficult recognition problems where achievable classification rates are intrinsically low. Such problems are often encountered in cases where classes are highly overlapped, or in cases where a prominent curvature in data renders a projection onto a single linear subspace inadequate. The proposed feature extraction/classification method uses class-dependent PCA in conjunction with linear discriminant feature extraction and performs well on a variety of real-world datasets, ranging from digit recognition to classification of high-dimensional bioinformatics and brain imaging data.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,