Article ID Journal Published Year Pages File Type
532826 Pattern Recognition 2007 15 Pages PDF
Abstract

In this paper we propose a new co-clustering algorithm called possibilistic fuzzy co-clustering (PFCC) for automatic categorization of large document collections. PFCC integrates a possibilistic document clustering technique and a combined formulation of fuzzy word ranking and partitioning into a fast iterative co-clustering procedure. This novel framework brings about simultaneously some benefits including robustness in the presence of document and word outliers, rich representations of co-clusters, highly descriptive document clusters, a good performance in a high-dimensional space, and a reduced sensitivity to the initialization in the possibilistic clustering. We present the detailed formulation of PFCC together with the explanations of the motivations behind. The advantages over other existing works and the algorithm's proof of convergence are provided. Experiments on several large document data sets demonstrate the effectiveness of PFCC.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,