Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
532884 | Pattern Recognition | 2007 | 13 Pages |
We propose a logistic regression method based on the hybridation of a linear model and product-unit neural network models for binary classification. In a first step we use an evolutionary algorithm to determine the basic structure of the product-unit model and afterwards we apply logistic regression in the new space of the derived features. This hybrid model has been applied to seven benchmark data sets and a new microbiological problem. The hybrid model outperforms the linear part and the nonlinear part obtaining a good compromise between them and they perform well compared to several other learning classification techniques. We obtain a binary classifier with very promising results in terms of classification accuracy and the complexity of the classifier.