Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
532943 | Pattern Recognition | 2006 | 13 Pages |
Abstract
In this paper, we address the problem of comparing and classifying protein surfaces with graph-based methods. Comparison relies on matching surface graphs, extracted from the surfaces by considering concave and convex patches, through a kernelized version of the Softassign graph-matching algorithm. On the other hand, classification is performed by clustering the surface graphs with an EM-like algorithm, also relying on kernelized Softassign, and then calculating the distance of an input surface graph to the closest prototype. We present experiments showing the suitability of kernelized Softassign for both comparing and classifying surface graphs.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
M.A. Lozano, F. Escolano,