Article ID Journal Published Year Pages File Type
533029 Pattern Recognition 2009 17 Pages PDF
Abstract

A new cluster validity index is proposed that determines the optimal partition and optimal number of clusters for fuzzy partitions obtained from the fuzzy c-means algorithm. The proposed validity index exploits an overlap measure and a separation measure between clusters. The overlap measure, which indicates the degree of overlap between fuzzy clusters, is obtained by computing an inter-cluster overlap. The separation measure, which indicates the isolation distance between fuzzy clusters, is obtained by computing a distance between fuzzy clusters. A good fuzzy partition is expected to have a low degree of overlap and a larger separation distance. Testing of the proposed index and nine previously formulated indexes on well-known data sets showed the superior effectiveness and reliability of the proposed index in comparison to other indexes.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,