Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
533534 | Pattern Recognition | 2011 | 15 Pages |
Segmentation and recognition of continuous gestures are challenging due to spatio-temporal variations and endpoint localization issues. A novel multi-scale Gesture Model is presented here as a set of 3D spatio-temporal surfaces of a time-varying contour. Three approaches, which differ mainly in endpoint localization, are proposed: the first uses a motion detection strategy and multi-scale search to find the endpoints; the second uses Dynamic Time Warping to roughly locate the endpoints before a fine search is carried out; the last approach is based on Dynamic Programming. Experimental results on two arm and single hand gestures show that all three methods achieve high recognition rates, ranging from 88% to 96% for the two arm test, with the last method performing best.