Article ID Journal Published Year Pages File Type
533566 Pattern Recognition 2011 17 Pages PDF
Abstract

In this paper a generalized tensor subspace model is concluded from the existing tensor dimensionality reduction algorithms. With this model, we investigate the orthogonality of the bases of the high-order tensor subspace, and propose the Orthogonal Tensor Neighborhood Preserving Embedding (OTNPE) algorithm. We evaluate the algorithm by applying it to facial expression recognition, where both the 2nd-order gray-level raw pixels and the encoded 3rd-order tensor-formed Gabor features of facial expression images are utilized. The experiments show the excellent performance of our algorithm for the dimensionality reduction of the tensor-formed data especially when they lie on some smooth and compact manifold embedded in the high dimensional tensor space.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,