Article ID Journal Published Year Pages File Type
533570 Pattern Recognition 2011 14 Pages PDF
Abstract

Supervised classification based on error-correcting output codes (ECOC) is an efficient method to solve the problem of multi-class classification, and how to get the accurate probability estimation via ECOC is also an attractive research direction. This paper proposed three kinds of ECOC to get unbiased probability estimates, and investigated the corresponding classification performance in depth at the same time. Two evaluating criterions for ECOC that has better classification performance were concluded, which are Bayes consistence and unbiasedness of probability estimation. Experimental results on artificial data sets and UCI data sets validate the correctness of our conclusion.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,