Article ID Journal Published Year Pages File Type
533720 Pattern Recognition 2008 13 Pages PDF
Abstract

We present a method for object class detection in images based on global shape. A distance measure for elastic shape matching is derived, which is invariant to scale and rotation, and robust against non-parametric deformations. Starting from an over-segmentation of the image, the space of potential object boundaries is explored to find boundaries, which have high similarity with the shape template of the object class to be detected. An extensive experimental evaluation is presented. The approach achieves a remarkable detection rate of 83–91% at 0.2 false positives per image on three challenging data sets.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,