Article ID Journal Published Year Pages File Type
533757 Pattern Recognition 2008 9 Pages PDF
Abstract

This paper investigates various ensemble methods for offline handwritten text line recognition. To obtain ensembles of recognisers, we implement bagging, random feature subspace, and language model variation methods. For the combination, the word sequences returned by the individual ensemble members are first aligned. Then a confidence-based voting strategy determines the final word sequence. A number of confidence measures based on normalised likelihoods and alternative candidates are evaluated. Experiments show that the proposed ensemble methods can improve the recognition accuracy over an optimised single reference recogniser.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,