Article ID Journal Published Year Pages File Type
534308 Pattern Recognition Letters 2014 6 Pages PDF
Abstract

Extreme Support Vector Machine (ESVM) is a nonlinear robust SVM algorithm based on regularized least squares optimization for binary-class classification. In this paper, a novel algorithm for regression tasks, Extreme Support Vector Regression (ESVR), is proposed based on ESVM. Moreover, kernel ESVR is suggested as well. Experiments show that, ESVR has a better generalization than some other traditional single hidden layer feedforward neural networks, such as Extreme Learning Machine (ELM), Support Vector Regression (SVR) and Least Squares-Support Vector Regression (LS-SVR). Furthermore, ESVR has much faster learning speed than SVR and LS-SVR. Stabilities and robustnesses of these algorithms are also studied in the paper, which shows that the ESVR is more robust and stable.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,