Article ID Journal Published Year Pages File Type
534518 Pattern Recognition Letters 2014 10 Pages PDF
Abstract

•A novel method is proposed to identify people walking on curved trajectories.•Virtual images are synthesized adaptively from a 4D gait database.•Gait information is analyzed by a method using affine moment invariants.•The proposed method is robust to the change of the direction of the velocity vector.•Performance is improved by a voting-based person identification method.

Conventional methods of gait analysis for person identification use features extracted from a sequence of camera images taken during one or more gait cycles. The walking direction is implicitly assumed not to change. However, with the exception of very particular cases, such as walking on a circle centered on the camera, or along a line passing through the camera, there is always some degree of orientation change, most pronounced when the person is closer to the camera. This change in the angle between the velocity vector and the position vector in respect to the camera causes a decrease in performance for conventional methods. To address this issue we propose in this paper a new method, which provides improved identification in this context of orientation change. The proposed method uses a 4D gait database consisting of multiple 3D shape models of walking people and adaptive virtual image synthesis with high accuracy. Each frame, for the duration of a gait cycle, is used to estimate the walking direction of the subject, and a virtual image corresponding to the estimated direction is synthesized from the 4D gait database. The identification uses affine moment invariants as gait features. The efficiency of the proposed method is demonstrated through experiments using a database that includes 42 subjects.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,