Article ID Journal Published Year Pages File Type
534658 Pattern Recognition Letters 2012 8 Pages PDF
Abstract

In this paper, we propose multi-view object detection methodology by using specific extended class of haar-like filters, which apparently detects the object with high accuracy in the unconstraint environments. There are several object detection techniques, which work well in restricted environments, where illumination is constant and the view angle of the object is restricted. The proposed object detection methodology successfully detects faces, cars, logo objects at any size and pose with high accuracy in real world conditions. To cope with angle variation, we propose a multiple trained cascades by using the proposed filters, which performs even better detection by spanning a different range of orientation in each cascade. We tested the proposed approach by still images by using image databases and conducted some evaluations by using video images from an IP camera placed in outdoor. We tested the method for detecting face, logo, and vehicle in different environments. The experimental results show that the proposed method yields higher classification performance than Viola and Jones’s detector, which uses a single feature for each weak classifier. Given the less number of features, our detector detects any face, object, or vehicle in 15 fps when using 4 megapixel images with 95% accuracy on an Intel i7 2.8 GHz machine.

► New model can detect face, vehicle and logo. ► Multiple trained cascades decrease the detection false alarms significantly. ► New proposed features speeds up both training time and detecting. ► By using only 108 features, huge performance improvement was obtained.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,