Article ID Journal Published Year Pages File Type
534700 Pattern Recognition Letters 2011 11 Pages PDF
Abstract

Object classification in video is an important factor for improving the reliability of various automatic applications in video surveillance systems, as well as a fundamental feature for advanced applications, such as scene understanding. Despite extensive research, existing methods exhibit relatively moderate classification accuracy when tested on a large variety of real-world scenarios, or do not obey the real-time constraints of video surveillance systems. Moreover, their performance is further degraded in multi-class classification problems. We explore multi-class object classification for real-time video surveillance systems and propose an approach for classifying objects in both low and high resolution images (human height varies from a few to tens of pixels) in varied real-world scenarios. Firstly, we present several features that jointly leverage the distinction between various classes. Secondly, we provide a feature-selection procedure based on entropy gain, which screens out superfluous features. Experiments, using various classification techniques, were performed on a large and varied database consisting of ∼29,000 object instances extracted from 140 different real-world indoor and outdoor, near-field and far-field scenes having various camera viewpoints, which capture a large variety of object appearances under real-world environmental conditions. The insight raised from the experiments is threefold: the efficiency of our feature set in discriminating between classes, the performance improvement when using the feature selection method, and the high classification accuracy obtained on our real-time system on both DSP (TMS320C6415-6E3, 600 MHz) and PC (Quad Core Intel® Xeon® E5310, 2 × 4 MB Cache, 1.60 GHz, 1066 MHz) platforms.

Research highlights► We present a real-time object classifier for video surveillance systems. ► We use a large database extracted from various real-world scenes and scenarios. ► We present features that jointly leverage the distinction between various classes. ► We show the performance improvement when using our feature selection method. ► We demonstrate high classification accuracy on real-time systems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,