Article ID Journal Published Year Pages File Type
534885 Pattern Recognition Letters 2008 12 Pages PDF
Abstract

This paper presents a comparative analysis of novel supervised fuzzy adaptive resonance theory (SF-ART), multilayer perceptron (MLP) and competitive neural trees (CNeT) Networks over three pattern recognition problems. We have used two well-known patterns (IRIS and Vowel data) and a biological data (hydrogen data) to evaluate and check SF-ART stability, reliability, learning speed and computational load. The comparative tests with IRIS, Vowels and H2 data indicate that the SF-ART is capable to perform with a high classification performance, high learning speed (elapsed time for learning around half second), and very low computational load compared to the well-known neural networks such as MLP and CNeT which need minutes and seconds respectively to learn the training material.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,