Article ID Journal Published Year Pages File Type
534901 Pattern Recognition Letters 2009 9 Pages PDF
Abstract

Feature extraction and classification using Gabor wavelets have proven to be successful in computer vision and pattern recognition. Gabor feature-based Elastic Bunch Graph Matching (EBGM), which demonstrated excellent performance in the FERET evaluation test, has been considered as one of the best algorithms for face recognition due to its robustness against expression, illumination and pose variations. However, EBGM involves considerable computational complexity in its rigid and deformable matching process, preventing its use in many real-time applications. This paper presents a new Constrained Profile Model (CPM), in cooperation with Flexible Shape Model (FSM) to form an efficient localization framework. Through Gabor feature constrained local alignment, the proposed method not only avoids local minima in landmark localization, but also circumvents the exhaustive global optimization. Experiments on CAS-PEAL and FERET databases demonstrated the effectiveness and efficiency of the proposed method.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,