| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 534916 | Pattern Recognition Letters | 2008 | 9 Pages |
We present a novel approach to multi-texture image segmentation based on the formation of an effective texture feature vector. Texture sub-features are derived from the output of an optimized Gabor filter. The filter’s parameters are selected by an immune genetic algorithm, which aims at maximizing the discrimination between the multi-textured regions. Next the texture features are integrated with a local binary pattern, to form an effective texture descriptor with low computational cost, which overcomes the weakness of the single frequency output component of the filter. Finally, a K-nearest neighbor classifier is used to effect the multi-texture segmentation. The integration of the optimum Gabor filter and local binary pattern methods provide a novel solution to the task. Experimental results demonstrate the effectiveness of the proposed approach.
